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Abstract—Artifacts can result when reconstructing a dynamic I. INTRODUCTION
image sequence from inconsistent, as well as insufficient and trun- HE . . f i .. d kinet del
cated, cone beam single photon emission computed tomography estimation of ime-activity curves and kinetic mode

(SPECT) projection data acquired by a slowly rotating gantry. The parameters directly from projection data is potentially
artifacts can lead to biases in kinetic model parameters estimated useful for clinical dynamic single photon emission computed
from time-activity curves generated by overlaying volumes of in- tomography (SPECT) studies, particularly in those clinics that
terest on the images. However, the biases in time-activity curve esti- have only single-detector systems and, thus, are not able to
mates and subsequent kinetic parameter estimates can be reducedpencorm rapid tomographic acquisitions. Even with a three-de-

significantly by first modeling the spatial and temporal distribu- . . :
tion of the radiopharmaceutical throughout the projected field of ~t€Ctor system, a patient study that uses body contouring orbits

view, and then estimating the time-activity curves directly fromthe can take 45-60 s to obtain one full tomographic acquisition.
projections. This approach is potentially useful for clinical SPECT Because the radiopharmaceutical distribution changes while
studies involving slowly rotating gantries, particularly those using  the SPECT gantry rotates, projections at different angles come
a single-detector system or body contouring orbits with a multide- rom different tracer distributions. A dynamic image sequence
tector system. reconstructed from the inconsistent projections acquired by a

We have implemented computationally efficient methods for lowl . . " hat lead to bi
fully four-dimensional (4-D) direct estimation of spatiotemporal SIOWIy rotating gantry can contain artifacts that lead to biases

distributions from dynamic SPECT projection data. Temporal in kinetic parameters estimated from time-activity curves gen-
B-splines providing various orders of temporal continuity, as well erated by overlaying regions of interest on the images. If cone

as various time samplings, were used to model the time-activity beam collimators are used and the focal point of the collimators
ﬁr"des for sbegmenteg b'ooﬂ F%ol and tlzgue a/otlumes ',”,t?'mu‘ always remains in a particular image plane, additional artifacts
ated cone béam and paraflel beam cardiac data acquisitions. 5, qeyelop in other image planes reconstructed using insuffi-

Least-squares estimates of time-activity curves were obtained . L s
quickly using a workstation. Given faithful spatial modeling, cient projection samples [1]. If the projection samples truncate

accurate curve estimates were obtained using cubic, quadratic, or the patient's body, this can also result in additional image
linear B-splines and a relatively rapid time sampling during initial  artifacts. To overcome these sources of bias in conventional
tracer uptake. From these curves, kinetic parameters were esti- image-based dynamic data analysis, we and others have been
BnﬁfdAanQTfﬁﬁﬁzrioétﬂgiﬂfiﬁﬁﬁfszg?nﬂaﬁgrgr%?: éﬁrocvcélgy investigating the estimation of time-activity curves and kinetic
that spatial model mismatch adversely affected quantitative (rjnodeklj para;ntla.ters hdlrectly_ flr om ddynamlc ISdF.’E('?J prOJe(f:tI(r)]n
accuracy, but also resulted in structured errors (projected model data Py modeling the spatial and temporal distribution of the
versus raw data) that were easily detected in our simulations. radiopharmaceutical throughout the projected field of view [2].
This suggests iterative refinement of the spatial model to reduce  Building on research by Carson [3] and by Formiconi [4]
structured errors as an area of future research. into direct time-activity curve estimation for regions of interest,
Index Terms—Dynamic single photon emission computed to- We have used simulated data to show that unbiased kinetic
mography (SPECT), fully four-dimensional (4-D) reconstruction, parameter estimates for one-compartment models can be
kinetic parameter estimation. obtained directly from parallel beam and cone beam SPECT
projections, given the blood input function and the proper
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TABLE |
SUMMARY OF PROJECTIONGEOMETRIES PHYSICAL MODELING, AND COMPUTATIONAL COMPLEXITY FOR OUR PREVIOUS WORK [5]-[8] AND THIS WORK. THE
ABBREVIATIONS FOR THEGEOMETRIESARE SSP, N\GLE-SLICE PARALLEL BEAM; MSP, MULTISLICE PARALLEL BEAM; AND C, CONE BEAM. IN SECTION Il
OF THIS WORK, THE NUMBER OF PROJECTION SAMPLES IS DENOTED BY THE PRODUCT OF FACTORS I J K, AND THE NUMBER OF
LINEAR PARAMETERS ISDENOTED BY THE PRODUCT OFFACTORS M N

previous work this work
(5] (6] (71 (8]
projection geometry SSP ¢/MSP  SSP MSP C/MSP
input function known yes yes yes no no
liver in field of view no no yes yes yes
attenuation correction no no yes yes yes
point response modeling no no no no yes
scatter modeling no no no no - no
projection samples (x 10%) 0072 1.7 0.12 7.6 IJK =3.7
linear parameters 9 9 9 8 MN =96
elements in system matrix F (X 109) 0.65 16 1.0 61 TJRAMN = 350
multiply-and-adds for F'F (x10%) | 32 78 52 270 | rgrA2SFD — g7 g

slice transaxial positron emission tomography (PET) projec-The secondary result, which we report in Section lll, is
tions, using a blood input function that was estimated from ttze preliminary study of the biases that result from modeling
data. In addition to these methods based on segmented regigarfous orders of temporal continuity and using various time
and volumes, a number of researchers have reconstructed singg@aplings when estimating time-activity curves directly from
slice and multislice parametric images from SPECT and PEnamic cone beam and parallel beam SPECT projection data.
data for a variety of kinetic models [11]-[16]. The effects of spatial segmentation errors are also studied. In
In our previous work, we formulated a nonlinear estimatio8ection Ill-A, piecewise cubic, quadratic, linear, and constant
problem in which a set of linear parameters was estimated usBgplines [17] are used to model the time-activity curves for
least squares, given iteratively estimated values for the ndhe blood input, three myocardial volumes of interest, liver,
linear washout parameters for one-compartment kinetic modatsd background tissue in simulated data. Attenuation and
[5]-[7]. As discussed in Section Il and summarized in Table §ieometric point response are modeled, but scatter is not. Seg-
the computational resources required for the straightforwanmented volumes encompassing the projected field of view are
solution of the embedded linear least-squares subproblem gro@deled to contain spatially uniform activity concentrations.
linearly with the number of SPECT projection measuremenig Section 1lI-B, a Monte Carlo simulation is used to study the
and are nontrivial by today’s standards for typical patiegffects of noisy projections on kinetic parameter estimates for
datasets. In particular, the memory required to analyze0ge-compartment models obtained from the spline time-activity
dynamic 9™ Tc-teboroxime patient study necessitated theurves for the blood input function and the myocardial and
use of a Cray J90 at the National Energy Research Scientifier volumes. This “semidirect” approach, in which compart-
Computing (NERSC) Center [8]. To make matters worse, tffgental modeling is done subsequent to direct time-activity
computational requirements for the straightforward solutidii’veé estimation, complements our earlier work, in which
increase quadratically with the number of linear parameteRoMpartmental model parameters were estimated directly from
Thus, a more computationally efficient solution is needed fyoiection data [5]-{8]. In Section III-C, the effects of failing
perform more detailed spatiotemporal modeling and to deve|gbsegment myocardial defects and inaccurately localizing the

further our direct kinetic parameter estimation methods, usiH@flf)hcard'aLWg"lS are studied \(/jw_th SS|ml_JIate|ﬁI Sa_tlg' o .
currently available computers. fChe m?t IO 1%09y prhe_SEnte Il'n ?ftt'otr;] bIUI ds.‘ on 'f[fe wor
In this work the primary new development, which we reo ene ?'[. ], in which a spline fit to the blood input func-

ttlon and kinetic parameters for a compartmental model were

ort in Section Il, is a computationally efficient method that - . . -
P P y ointly estimated from time-activity curves generated by over-

extends Formiconi's least-squares algorithm [4] so that fU|1¥l ing regions of interest on a simulated temporal sequence of
four-dimensional (4-D) direct spatiotemporal distribution esti- ying reg P N

. S . reconstructed PET images. Nichasal. [19] have also used
mation from projections can be performed quickly on a work-

. . . . innes to model the time course of activity in volume elements
station with a modest amount of memory. This method is us q els) reconstructed from dynamic list mode PET data
with simulated data in Section Ill to reconstruct time-activity’ u y el '

curves for segmented volumes encompassing the projected
field of view. This method can be applied to projection data
acquired using any collimator or orbit geometry, provided that
the data yield a preliminary image reconstruction that can be
used to segment the activity distribution within the projected Time-varying activity concentrations within volumes of in-
field of view. terest encompassing the projected field of view can be modeled

Il. COMPUTATIONALLY EFFICIENT ESTIMATION
OF SPATIOTEMPORAL DISTRIBUTIONS DIRECTLY
FROM PROJECTIONS
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by selecting a set of temporal basis functions capable of repvenere thep;;, are the measured projections, tHg;;, are
senting typical time variations and having desired smoothnesgsighting factors/ is the number of projection rays per angle,
properties. For example, to fit the blood input function, Ched# is the number of angles per rotation, affds the number of

et al.[18] used five piecewise polynomial spline functions derotations. Typically, the weighting factors are either unity for
fined over four contiguous time segments. The segments wareunweighted fit or the estimated variances of the projections
determined by varying their endpoints in a prescribed fashié®r a weighted fit.

and using the set that yielded the smallest weighted sum ofEquations (1) and (2) can be rewritten in matrix form as
squared errors, averaged over 100 simulated data sets. To model

the time course of activity in voxels reconstructed from dy- p =Fa ©)
namic list mode PET data, Nicho&t al. [19] first calculated

the temporal histogram for the all of the data. Then, segmeanq
endpoints for cubic B-splines were defined by selecting a set
that yielded approximately equal arc lengths along the resulting

time-activity curve. In the simulations in Section Ill, we use 1@agpectively, where is anI.J K element column vector whose

B-splines spanning 15 time segments having geometrically i 3-(j— 1)1 +(k—1)1J]th element g, Fisanl JK x MN

creasing length. The order of the splines and the length of thtrix whose{[i + (j — 1) + (k — 1)1.J], [m + (n — 1)M]}th

initial time segment are varied in a prescribed fashion, and tBpment isu7?o”,, ais an M N element column vector whose

errors in the time-activity curve estimates and the subsequeptt(n—1)Mth elementisi,.,., p* is an/.J K element column

kinetic model parameter estimates are compared. vector whosdi + (j — 1)I + (k — 1)IJ]th element igp;ﬁjk,
Similarly, the spatially nonuniform activity concentratiorandW is anIJK x IJK diagonal matrix whoséi + (j —

within a particular volume can be modeled by selecting an’ + (k — 1)I.J]th diagonal element is/W; ;.. The criterion

appropriate set of spatial basis functions defined within th¢ is minimized by the vector of spatiotemporal basis function

volume. For example, to analyze®¥" Tc-teboroxime patient coefficients

study, we used indicator functions for the left ventricular my-

ocardium, blood pool, liver, and background tissue [8]. These a=(F'WF)"'F"Wp". (5)

were determined automatically by applying a 4-D edge detec- ) ] o

tion operator to the dynamic image sequence reconstructeef covariance matrix for the coefficieriiss

from the inconsistent projection data. In the simulations in

Section Ill, we use indicator functions for the known anatomy cov

ofgmathemanc?l phantorln.b s f . q ¢ wherecov(p*) is the covariance matrix for the measured pro-
b _'Vin a set Of temhporal asis unc;ft_lo_ns anf Sits 0 SFI)"_" Bltions. Given an estimate obv(p*), estimates of the statis-
asis functions for the volumes, coetlicients for the resulting., ncertainties of the coefficientsare the square roots of

spatiotemporal basis functions can be estimated directly frc_mb diagonal elements of the covariance matrix given by (6). In

the projections using the following generalization of FOrMigenera), the errors in the coefficients are correlated and the co-

coni's algorithm, which was developed for temporally statigariance matrix given by (6) has nonzero elements off the diag-
distributions [4]. onal.

The projection of thenth spatial basis function along ragt  sioring the entire matrik and calculating the symmetric ma-

angle; is denoted by.;;, and the integral of theth temporal trjx FTWF using straightforward matrix multiplication is com-
basis function during the time interval associated with anglepytationally inefficient. For example, about 3.7 million projec-

of rotationk is denoted by ;. The projection equations can b&jon samples result from a 15-min dynamic SPECT study, such

x> = (p* — Fa)" W(p* — Fa) @)

(a) = (FIWF) 'FI'W cov(p*)WF(F"WF)™! (6)

expressed as as that simulated in Section I1I-A, in which data are acquired for
vN 64 transversex 32 axial rays per anglel/(= 2048), J = 120
m angles per rotation, and one rotation per minute 15
k= 3 S a0, (1) anglesp P € 15

(Table I). Fully 4-D direct spatiotemporal distribution estima-
tion using 96 basis functions composed frath = 6 spatial
where thep;,, are the modeled projections, ths,,, are the and N = 16 temporal basis functions, such as these used in
linear coefficients associated with the time integrals of the prthe simulations described in Section I1I-A, involves a maffix
jections of the spatiotemporal basis functiohsjs the number containingl JKM N =~ 350 million elements (Table I). For an

of spatial basis functions, ard is the number of temporal basisunweighted least-squares reconstruction of the spatiotemporal
functions. The criterion that is minimized by varying the lineapasis function coefficient(i.e., forW an identity matrix), cal-
coefficientsa,,,, associated with the time integrals of the proculating the symmetric matrik” F using straightforward ma-
jections of the spatiotemporal basis functions is the weight&itk multiplication requires JK M N(M N +1)/2 ~ 17 billion

m=1n=1

sum of squares function multiply-and-add operations, givdn (Table I). This computa-
tional burden is nontrivial for current workstation-class com-
T K [ x N2 puters and grows worse quickly as either the nunidesf spa-
2= Z Z (Pl — Pijn) (2) tial basis functions or the numbaf of temporal basis functions

it Wik increases.
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The burden of storing the matrik can be reduced signif- the covariance between integrated segments of the spline
icantly by storing instead the spatial basis projection factonsodels for the time-activity curves for the blood input function
u; and the temporal basis integral factefy and calculating and a tissue uptake function can be estimated, which may be
the elements oF as needed. FofJAM > JKN, this re- useful for obtaining more accurate compartmental parameter
duces memory usage by a factor of ab&uv. For the example estimates via a weighted least-squares fit [21]. In Section I1I-B,
above with{I, J, K, M, N} = {2048, 120, 15, 6, 16}, this however, an unweighted least-squares fit is performed.
requires storage of onlyJM = 1.5 million v} factors and  Given an estimat@® of the covariance matrix for the mea-
JKN = 29 thousandv”; factors and reduces memory usageured projections and substituting the identity matrixVrin

by a factor of about 230. (6), we obtain
For an unweighted least-squares reconstruction of the spa-
tiotemporal basis function coefficierdg(i.e., forW an identity cov(a) = (F'F) *F'PF(FT'F) L. (9)
matrix), the symmetrid/ N x M N matrix FT'F can be cal-
culated more efficiently as follows. Denoting then + (n —  |nverting the symmetrid/ N x M N matrix, FTF is straightfor-
DM], [m' + (n’ — 1)M]}th element o F by ¢™"™™ , we  ward, given its Cholesky decomposition. Taking the measured
have projections to be independent Poisson random variables, an esti-
I J K mateP of their covariance matrix is thB/ K x IJK diagonal
¢"mm'"' = Z Z ug J"k% vl (7) matrix having the estimated projection vecfpr= Fa along
i=1 j=1 k=1 the diagonal. Denoting thém + (n — 1)M], [m’ + (n' —

1)M]}th element of the symmetrié/ V' x M N matrix FTPF

Rearranging the summations yields by 1/)""”" " \we have

J

T K

7 7 I J K

¢ [Z Uy 5 Wi ] [Z Ujkvjk] rnnrn n’ Z Z u;’}v?kﬁ“kuzl,v?’: (10)
k=1 i=1 j=1 k=1

AN ®)  wherep;; is the[i + (j — 1)I + (k — 1)IJ]th element of
the estimated projection vectpr Rearranging the summations
, , ) yields
where the factorm}"m and " denote the inner products

Soioy uftul andS 0, v, respectively.
The number op}"m' factorsis7M (M +1)/2, the number of
i factors isJN(N +1)/2, and the number of™"™"™" fac-
torsisM N(M N +1)/2. It takes! multiply-and-add operations
to calculate eacl;u}"m' factor andK multiply-and-add opera-
tions to calculate each;™" factor. Given theu”™" and ;™
factors, it takes/ multlply and- adds to calculate each of the o
#mmm'n’ factors. Thus, thé™ '™’ can be calculated usmgjust where the factdnu denotes the weighted inner product
JUIM(M+1D)+KN(N+1)+MN(MN+1)]/2 multiply-and- Dim1 Ui Pijktyy -
adds. Forl > N? andK < M?, this reduces the number of The number Ofw"”" factors is JKM(M + 1)/2, and
operations by a factor of abodf V2. For the example above the number ofz/;""”" " factors iISMN(MN + 1)/2. Given
with {I, J, K, M, N} = {2048, 120, 15, 6, 16}, this com- the g, ., it takes2l muItipIy operations and add operations
putationally eff|C|ent calculat|0n oFTF requires storage of to calculate eachuj'”" factor. Given thewj';j" factors, it
about 19 OOQL""" andz/J"" factors and about six million mul- takes2JK multiplies andJ K adds to calculate each of the
tiply-and-add operatlons which is a factor of about 2800 lesg™ ™" factors. Thus, the/”™™'™" can be calculated using
than that required for straightforward matrix multiplication. Fojust JK[IM(M + 1) + MN(MN + 1)] multiply operations
the simulations described in Section IlI-A, this computatiorand half that number of add operations. Compared with the
ally efficient calculation took about 2.2 s on a 194-MHz MIP$omputationally efficient calculation &7 F, this calculation
R10000-based Silicon Graphics workstation. of FTPF requires abouK times more multiply-and-adds
Having addressed the major issues of stodh@nd calcu- and aboutX times more memory, giveﬁ’. For the case in
lating F” F, the next computational hurdle is calculatifgp*.  which P is the diagonal matrix having the estimated projection
This can be done in a relatively straightforward manner usingctorp = Fa along the diagonalf® can be calculated using
(I+1)JKMN multiply-and-add operations, given thg and IJKM(N + 1) multiply-and-add operations, which is about
i, factors. The system of equatioFS Fa = F”p* can then (N +1)/(M +1) times more multiply-and-adds than is needed
be solved efficiently for the spatiotemporal basis function coe calculateFZPF. Thus, given the calculation time f&~F
ficientsa using the Cholesky decompositionBf F [20]. of about 2.2 s on a 194-MHz MIPS R10000-based Silicon
An estimate of the covariance matrix for the unweighte@raphics workstation an& = 15 rotations, such as for the
least-squares estimat@§6)] can be calculated in the following simulations described in Section IlI-A, calculation Bf PF
computationally efficient manner. From this covariance matrishould take about 1 min, giveR. For M = 6 spatial basis

K
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Fig. 1. Compartmental model fot®™Tc-teboroxime in the myocardium.
B(t) is the blood input functiong)™ (¢) is the tracer in tissue volume,, and
krr andk7s are the rate constants for uptake and washout, respectively.

functions andV = 16 temporal basis functions, calculation of
P should take about 3 min.

For a weighted least-squares reconstruction of the spatiotem-
poral basis function coefficient [i.e., for W=1 = cov(p*)
in (5) and (6)], calculating®” WF takes the same amount of
computation as calculatinETf’F. Thus, for dynamic SPECT
projection data acquired with a relatively small number of rota-
tions K, it appears that with these methods, a workstation with
a modest amount of memory can be used to perform a weighted
least-squares reconstruction of the spatiotemporal basis func-
tion coefficientsi, as well as to obtain an estimate of the covari-
ance matrix for the coefficients, in a reasonable amount of time.
These methods are easily parallelized, and additional savings in
computation can be realized by taking advantage of the sparsity
of nonzero spatial basis projection factef$ and nonzero tem-
poral basis integral factors .

(b)

Fig.2. Transverse cross sections through (a) the MCAT emission phantom and
(b) the MCAT attenuation phantom. The truncation of data resulting from the
. COMPUTER SIMULATIONS use of cone beam collimators is depicted in (a).

The Mathematical Cardiac Torso (MCAT) phantom [22], de 4,
veloped by the University of North Carolina Medical Imagin¢
Research Laboratory, was used in simulations to evaluate 160
ability to estimate spatiotemporal distributions directly fromdy ;.4 |
namic cone beam and parallel beam SPECT projections us
unweighted least squares. In addition, kinetic parameters » 120t
one-compartment models (Fig. 1) were estimated from the %
sulting spatiotemporal distributions, and a preliminary study g

the effects of spatial segmentation errors was performed. T(_% 80
MCAT emission phantom [Fig. 2(a)] was composed of 128 coi®

tiguous 1.75-mm thick slices and contained three myocard

100

normal myocardium

volumes of interest (normal myocardium, septal defect, and I 40 (gleral defect

eral defect), blood pool, liver, and background tissue. These 20

volumes did not overlap. The myocardial defects were defini

as the intersection of 3-cm diameter spheres with the septal 0

lateral walls of the left ventricle. Cone beam and parallel bea

projections were attenuated using the corresponding MCAT . time (min)

tenuation phantom [Fig. 2(b)]. Single-slice versions of thesFe _ _ y o
phantoms were used in our previous work [7]. ig. 3. Simulated time-activity curves for the volumes shown in Fig. 2(a).
The simulated time-activity curves for the six emission vol-

umes are shown in Fig. 3. These are the same curves that werkhe simulated 15-min data acquisition consisted of 64 trans-
used for the single-slice simulation in our previous work [7ersex 32 axial rays per angld (= 2048), J = 120 angles per
The time-activity curves for the three myocardial volumes of irrotation, and one rotation per minut& (= 15) of a single-de-
terest and the liver were generated by using the blood pool cuteetor system. The projection bins were 7 nxur7 mm at the

as the input to one-compartment models having kinetics catetector for both the cone beam and parallel beam geometries,
responding to those of teboroxime [23]—-[25]. The backgrourahd the detector was 30 cm from the center of the field of view.
tissue activity was proportional to the blood pool activity. The collimators had a hole diameter of 2 mm, a length of 4 cm,
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Fig. 4. Examples of piecewise (a) cubic, (b) quadratic, (c) linear, and (d) constant B-spline basis functions used to model time-activity tegnesplBigs
were used to span 15 time segments having geometrically increasing length. The thirteenth spline is shown as a solid curve. The initial timegtegorahele
splines shown here is 10 s.

and were offset 1 cm from the detector. The cone beam collingiadratic, linear, and constant B-splines were used with initial
tors had a focal length of 70 cm, which resulted in truncation tiime segment lengths ranging between 2.5 and 60 s (Table II).
the data [Fig. 2(a)]. The parallel beam data were not truncat@dhe shorter initial time segment lengths provided a higher
Attenuation and geometric point response were modeled usthensity of temporal spline basis functions at the beginning
a ray-driven projector with line length weighting [26]. Scatteof the simulated acquisition, when the activity concentrations
was not modeled. were changing most rapidly (Fig. 3). The 60-s initial time
segment length provided basis functions spaced uniformly in
time. The cubic, quadratic, and linear B-splines allow modeling
A. Spatiotemporal Distribution Estimates of curves that are continuous through their second, first, and
zeroth derivative, respectively.

The spatial basis projection factarg were defined by for-  The computational benefits of factoring the maffinto the
ward projecting each of the six known emission volumes corgpatial basis projection factorg? and the temporal basis in-
posing the MCAT phantom [Fig. 2(a)]. Each emission volumggral factorss™, were evident in the simulation. Rather than
was modeled to contain spatially uniform activity (i.e., eactoring its more than 350 million elements, about 1.5 million
volume was represented by a spatial indicator function), whi@Jg; and v, factors were stored instead. The number of mul-
yieldedM = 6 sets of spatial basis projection factors. tiply-and-adds used to calculal®” F was reduced from over

The temporal basis integral factorg; were defined by 17 billion to less than six million. A set of time-activity curves
integrating/N = 16 splines spanning 15 time segments havingas estimated directly from the 3.7 million simulated projec-
geometrically increasing length (Fig. 4). Piecewise cubitipn samples in about 2.3 min on a 194-MHz MIPS R10000-
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TABLE I
TEMPORAL SAMPLINGS USED IN THE SIMULATIONS IN SECTION IlI-A. GIVEN AN INITIAL TIME SEGMENT LENGTH, A SCALING FACTOR WAS CALCULATED AND
USED TOGENERATE A SEQUENCE OF15 TIME SEGMENTSHAVING GEOMETRICALLY INCREASINGLENGTH AND SPANNING A TOTAL OF 15 MIN

initial segment
time scaling subsequent time segments (sec)
segment factor
(sec) 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2.5 1.39 35 48 67 94 13 18 25 35 49 68 95 130 180 250
5.0 1.31 6.5 8.6 11 15 19 25 33 43 56 74 96 130 170 220
10 1.23 12 15 18 23 28 34 42 51 63 77 95 120 140 170
20 1.14 23 26 30 34 39 45 51 58 67 76 87 100 110 130
40 1.06 42 45 47 50 52 55 58 62 65 69 72 77 81 85
60 1.00 60 60 60 60 60 60 60 60 60 60 60 60 60 60
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Fig.5. Normalized rms modeling errors for time-activity curves estimated directly from noiseless cone beam projections, using piecewiséx g athiatic,
(c) linear, and (d) constant B-spline basis functions (e.g., Fig. 4) and initial time segment lengths ranging between 2.5 and 60 s (Table II).

based Silicon Graphics workstation. The calculation¥6F estimated directly from noiseless projections, normalized by the

andF7p* took about 2.2 s and 2.2 min, respectively. rms values of the simulated curves and expressed as percent-
Figs. 5 and 6 depict the root mean square (rms) differences bges. The temporal spline modeling errors were largest for the

tween the simulated time-activity curves and the spline curvesptal and lateral defects, which had relatively small spatial sup-
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Fig. 6. Same quantities as in Fig. 5, for parallel beam projections.

ports [Fig. 2(a)] and low-activity concentrations (Fig. 3). In{Fig. 6). For the cone beam geometry and the uniform time
termediate errors resulted for the blood pool and backgrous@dmpling provided by using an initial time segment length
which had larger spatial supports but quickly decaying activigf 60 s, the errors ranged between 0.45% and 50%, 0.48%
concentrations. The errors were smallest for the normal mgnd 53%, 0.65% and 60%, and 4.0% and 110% for the cubic,
ocardium and liver, which had larger spatial supports and higipdadratic, linear, and constant B-splines, respectively. The
activity concentrations throughout the simulated data acquisdrresponding ranges of errors for the parallel beam geometry
tion. The errors tended to increase as the length of the initisére 0.37%—69%, 0.41%—73%, 0.58%—83%, and 4.0%—-140%.
time segment for the splines increased.

In most cases, the temporal spline modeling errors for tie Kinetic Parameter Estimates
three myocardial volumes of interest and the blood pool wereQfinterest is how the temporal spline modeling errors bias the
smaller for the cone beam geometry than for the parallel beadtimates of kinetic parameters obtained from the directly esti-
geometry, because of the increased relative sensitivity to theggted time-activity curves. To study this, we used the program
volumes provided by the cone beam sampling. Errors f@FIT [27]-[29] to fit one-compartment kinetic models to the
the background tissue were comparable for both geometrigiectly estimated time-activity curves for the three myocardial
whereas in most cases, the errors for the liver were larger {@lumes of interest and the liver, using the directly estimated
the cone beam geometry. For the cone beam geometry &nsbd pool curve as the input function. The background tissue
the relatively rapid initial sampling provided by using initialactivity was modeled to be proportional to the blood pool ac-
time segment lengths of 2.5, 5, or 10 s, the errors for all si¥ity, and its amplitude was also estimated.
volumes ranged between 0.020% and 3.8%, 0.022% and 1.7%gor the one-compartment kinetic model (Fig. 1), the uptake
0.090% and 6.2%, and 1.6% and 64% for the cubic, quadraijig tissue volumen is
linear, and constant B-splines, respectively (Fig. 5). The corre-
sponding ranges of errors for the parallel beam geometry were

t
m _ m —ki5(t—T) _ pmyrm
0.020%-4.9%, 0.022%-2.7%, 0.089%6.8%, and 1.6%—62% < () = k21 /0 B(r)e dr =kve)  (12)
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TABLE Il
KINETIC PARAMETERS OBTAINED FROM TIME-ACTIVITY CURVES ESTIMATED DIRECTLY FROM NOISELESSCONE BEAM PROJECTIONSUSING B-SPLINES OF
VARIOUS ORDER AND VARIOUS INITIAL TIME SEGMENT LENGTHS UNITS FOR UPTAKE k27 AND WASHOUT ki ARE MIN™!. VALUES FOR
THE DIMENSIONLESS VASCULAR FRACTION f7* AND THE BACKGROUND AMPLITUDE g ARE NOT SHOWN. VALUES THAT DIFFERED
FROM THE SIMULATED VALUE BY >10%ARE SHOWN IN BOLDFACE TYPE

cone beam
noiseless fit
simulated initial time segment length (sec)
2.5 5 10 20 40 60

normal kL, 0.700 0.700 0.700 0.701 0.700 0.683 0.709

myocardium k}z 0.150 0.150 0.150 0.150 0.150 0.149 0.155

septal kfﬁl 0.300 0.301 0.301 0.300 0.286 0.181 0.358

cubic defect ki, 0.300 0.301 0.301 0.300 0.288 0.207 0.334

B-splines lateral "'31 0.500 0.498 0.496 0.522 0.441 1.17 2.54

defect l.-"l‘2 0.600 0.599 0.598 0.616 0.565 0.942 1.75

liver 1.2‘ \ 0.900 0.900 0.900 0.900 0.904 0.879 0.873
L-’l'2 0.0020 0.0020  0.0020  0.0020 0.0021 0.0016 0.0017

normal I.-.j | 0.700 0.701 0.701 0.700 0.700 0.684 0.708

myocardium lv}.z 0.150 0.150 0.150 0.150 " 0.150 0.149 0.155

septal Iv.}", 0.300 0.303 0.302 0.300 0.297 0.183 0.350

quadratic defect Kk, 0.300 0.302 0.301 0.300 0.296 0.211 0.326

B-splines lateral Iv:;,fl 0.500 0.502 0.499 0.502 0.444 1.19 2.89

detect l\~"1‘2 0.600 0.602 0.598 0.603 0.561 0.957 1.87

liver k:z‘l 0.900 0.900 0.900 0.900 0.901 0.879 0.871
K, 0.0020 0.0020  0.0020  0.0020 0.0020 0.0016 0.0017

normal k.} | 0.700 0.703 0.700 0.702 0.698 0.687 0.708

myocardium k:z 0.150 0.150 0.150 0.150 0.150 0.149 0.155

septal k.f, 0.300 0.295 0.292 0.308 0.301 0.170 0.335

linear defect L-f2 0.300 0.297 0.296 0.305 0.302 0.204 0.315

B-splines lateral kgl 0.500 0.533 0.498 0.491 0.533 1.22 1.90

defect kfz 0.600 0.602 0.578 0.585 0.626 0.990 1.32

liver LZ‘ ) 0.900 0.903 0.900 0.902 0.895 0.888 0.864
k‘l‘z 0.0020 0.0020  0.0020  0.0020 0.0020 0.0018 0.0014

normal kj \ 0.700 0.688 0.685 0.681 0.682 0.717 0.641

myocardium l.','2 0.150 0.146 0.147 0.147 0.148 0.154 0.149

septal kgl 0.300 0.317 0.275 0.265 0.379 0.252 0.082

constant defect L’fz 0.300 0.341 0.299 0.294 0.322 0.254 0.125

B-splines lateral k:}l 0.500 0.533 0.734 0.665 0.331 1.98 4.23

defect ]":1;2 0.600 0.635 0.833 0.660 0.553 1.36 2.09

liver I":}l 0.900 0911 0.903 0.892 0.885 0.901 0.851
""llz 0.0020 0.0027 0.0026 0.0020 0.0021 0.0029 0.0022

where B(¢) is the blood input functionk}; is the uptake pa- lateral defect, and liver (denoted by indexes= 1, 2, 3, and 4,
rameter, and7; is the washout parameter. Total activity in theespectively), RFIT varies the parametéty, k75, and f;* to

tissue is given by minimize the unweighted sum of squares function
m m m m J i N
QU (H) + [IBE) = KV + TBY (19) FER S {Z ot
j=lk=1 (n=1

compartment models for the normal myocardium, septal defect, = At

2
tik
where ] is the fraction of vasculature in the tissue. To fit one- / ’ [V () + £ B(1)] dr} (14)
t
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TABLE IV
SAME QUANTITIES AS IN Table I, FOR PARALLEL BEAM PROJECTIONS VALUES THAT DIFFERED FROM THESIMULATED VALUE BY >10%
ARE SHOWN IN BOLDFACE TYPE

parallel beam

noiseless fit
simulated initial time segment length (sec)
2.5 5 10 20 40 60
normal Ln}l 0.700 0.700 0.700 0.701 0.701 0.677 0.718
myocardium I\-}2 0.150 0.150 0.150 0.150 0.149 0.148 0.158
septal k2, 0.300 0301 0301 0300 028  0.162  0.357
cubic defect Ivf2 0.300 0.301 0.301 0.301 0.287 0.192 0.333
B-splines lateral Ivg, 0.500 0.499 0.494 0.527 0.422 1.48 4.26
defect "':1‘2 0.600 0.599 0.596 0.619 0.551 1.07 2.30
liver 1\2‘ | 0.900 0.900 0.900 0.900 0.906 0.872 0.867
k’,‘z 0.0020 0.0020 0.0020  0.0020 0.0021 0.0015 0.0018
normal k.} | 0.700 0.701 0.701 0.700 0.700 0.678 0.719
myocardium k!, 0.150 0.150 0150  0.150  0.150  0.148  0.158
septal l.-.'j, 0.300 0.304 0.301 0.301 0.296 0.162 0.347
quadratic defect L'fz 0.300 0.303 0.301 0.301 0.295 0.194 0.324
B-splines lateral I«fj, 0.500 0.503 0.498 0.507 0.422 1.57 4.64
© defect I.-"]’.z 0.600 0.603 0.597 0.607 0.545 1.12 2.37
liver Az' 1 0.900 0.900 0.900 0.900 0.903 0.872 0.865
k']‘.z 0.0020 | 0.0020 0.0020  0.0020 0.0020 0.0016 0.0017
normal k.}l 0.700 0.704 0.700 0.702 0.697 0.681 0.719
myocardium k:.z 0.150 0.150 0.150 0.150 0.150 0.148 0.159
septal k2, 0.300 0296 0291 0309 0306 0.158  0.327
linear defect k'f.z 0.300 0.298 0.296 0.305 0.306 0.194 0311
B-splines lateral k:}] 0.500 0.547 0.495 0.474 0.466 1.64 2.71
defect /""1‘2 0.600 0.609 0.574 0.571 0.575 1.18 1.57
liver l\jl 0.900 0.904 0.900 0.902 0.895 0.882 0.855
k-l12 0.0020 0.0020 0.0020  0.0020 0.0020 0.0018 0.0015
normal k;l 0.700 0.679 0.677 0.683 0.682 0.721 0.658
myocardium ]"fz 0.150 0.144 0.146 0.147 0.148 0.155 0.153
septal k.fl 0.300 0.249 0.261 0.259 0.401 0.266 0.071
constant defect k'fz 0.300 0.283 0.289 0.295 0.331 0.251 0.115
B-splines lateral k3, 0.500 0.549  0.816  0.682 0454  3.05 5.74
detect ]":1‘2 0.600 0.644 0.892 0.653 0.727 1.70 2.22
liver 1\2‘ | 0.900 0.912 0.903 0.890 0.879 0.906 0.850
k’l’z 0.0020 0.0028 0.0027 0.0019 0.0020 0.0034 0.0023
where thea,,, are given by (5),v7, is the integral of for J = ,Jandk = 1,..., K; and the value
the nth temporal basis function during the time mEn laGnvm/At attimet .
terval [t;x — At t;x] in which projection data are ac- The amplitudg of the background tissue (denoted by index

quired at angle; of rotation k%, V’"(v) is the convolution m = 5) is estimated by minimizing the unweighted sum of
Jo B(r")e ¥==") qr', and B(r) is derived from the squares function

directly estimated blood pool time-activity curve (denoted

by indexm = 6) as follows. Given the set of time inte-

J K (N tin 2
N 2= :»mt%—/ B(rydr} . (15
grals, {anl agnVip; i =1, ..., Sy k=1, ...,K},A of X5 Z {Za Yk tj,ﬁmg (1) T} (15)
the directly estimated blood pool curve, RFIT modé&iér)

as a piecewise linear function that interpolates zero at timeTables Ill and IV show the kinetic parameter estimates ob-
T = 0; the valuer:‘:1 agnvyy, /At at timet;, — (At/2), tained from the spline models for time-activity curves estimated
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Fig. 7. First of 100 noisy cone beam realizations: time-activity curves for (a) the blood pool, (b) the normal myocardium, (c) the septal defgitte daie (dl
defect, estimated using quadratic B-splines and an initial time segment length of 10 s [Fig. 4(b)]. Samples of the simulated curves (Fig. 3) anpashtswvn a
The solid and dotted curves were estimated from noiseless and noisy projections, respectively. The dashed curves in (b)—(d) are the kinstio thedwiy
curves. The fitted kinetic parameters are listed in column (c) of Table V.

directly from noiseless projections. The biases in the uptake pzations of projections having Poisson noise were generated for
rametersky; and the washout parametérg, were particularly the cone beam and parallel beam geometries. The amplitude of
small when using quadratic B-splines and initial time segmetiite simulated blood input function was adjusted so that about 10
lengths of 2.5, 5, or 10 s. For these three time samplings, tmélion events were detected using the cone beam collimators.
biases (calculated as the absolute value of the difference Wéth this same blood input function, about 6.4 million events
tween the simulated and estimated values, normalized by there detected using the parallel beam collimators. This number
simulated value and expressed as a percentage) ranged betwétnal detected events was selected to be less, on a slice by slice
0.0% and 1.0% for the cone beam geometry (Table I1l) and 0.(84&sis, than the total of 4.8 million events that were detected in
and 1.4% for the parallel beam geometry (Table IV). For cubtbe 11 7.12-mm thick slices analyzed i#’& Tc-teboroxime pa-
B-splines, the biases were comparable, except for the case ofttaet study [8]. Quadratic B-splines and an initial time segment
lateral defect and an initial time segment length of 10 s, whidéngth of 10 s were used to model the time-activity curves. A
had larger bias. For linear B-splines, the biases were compae-tailedz-test [30] was used to assess the biases in the sample
rable for the normal myocardium and the liver, and they weraeans of the kinetic parameter estimates.
larger for the defects. Overall, the biases for the cubic and linearFigs. 7 and 8 show the time-activity curves estimated for the
B-splines ranged between 0.0% and 4.4% and 0.0% and 6.68%0d pool and the three myocardial volumes of interest, for the
respectively, for the cone beam geometry and initial time sefirst noisy realization of cone beam and parallel beam data, re-
ment lengths of 2.5, 5, or 10 s. For the parallel beam geometspectively. For both the cone beam and parallel beam geome-
the biases ranged between 0.0% and 5.4% and 0.0% and 9.¢#&s, the differences between the spline time-activity curves es-
respectively. timated directly from noiseless and noisy projections were rel-
To study the effects of noisy projections on kinetic parametatively small, for the blood pool and the normal myocardium.
estimates obtained from spline time-activity curves, 100 redor the septal and lateral defects, the differences between the
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Fig. 8. Same curves as in Fig. 7 for parallel beam projections. The fitted kinetic parameters are listed in column (c) of Table VI.

spline curves estimated directly from noiseless and noisy pmermal myocardium and the liver did not differ significantly
jections were relatively large. Noise in the spline curve coeffirom the simulated valuesH( > 0.05). The sample means of
cients generated extended excursions (dotted lines) above thedwashout parametekg; were significantly different from
below the noiseless spline curves (solid lines). The curves as® simulated valuesH{ < 0.03), although the difference was
ciated with the one-compartment kinetic model fits to the noignly 0.7% for the normal myocardium. The difference for
spline curves provided smoother approximations (dashed liné§ liver washout was 10%. The sample standard deviations
to the noiseless spline curves. In all cases, the noiseless spifdumn (e)] ranged between 0.9% and 40%. The sample
curves provided relatively good fits to the samples of the sim{i€ans of the uptake and washout parameters for the septal and
lated curves. lateral defects were significantly different from the simulated

Summaries of the results for all 100 noisy realizations a¥@/ues € < 0.03). The differences between the sample means
presented in Tables V and VI for the cone beam and paralffld the simulated values for the defects ranged between 11%
beam geometries. For the cone beam geometry (Table V), 8 39%. The sample standard deviations ranged between
sample means [column (d)] of the uptake paramet§tsand 40% and 140%.
the washout parametefd’ for the normal myocardium and
the liver did not differ significantly from the simulated valuesc. Effects of Spatial Segmentation Errors
(P > 0.4). The sample standard deviations [column (e)] ranged ) ) ) o )
between 0.5% and 20%. The sample means of the uptake anflaving demonstrated that direct time-activity curve estimates
washout parameters for the septal and lateral defects were §igd subsequent kinetic parameter estimates are robust with re-
nificantly different from the simulated value® (< 0.05). The spect to the temporal B-spline basis function order and the ini-
differences between the sample means and the simulated vafifdéime sampling, given noiseless data and faithful modeling of
for the defects ranged between 4.8% and 16%. The sample sthg-spatial distribution of activity and physical effects, we study
dard deviations ranged between 22% and 42%. now the effects of spatial segmentation errors.

For the parallel beam geometry (Table VI), the sample In practice, we expect to base the spatial segmentation on
means [column (d)] of the uptake parametéfg for the static functional images obtained by summing the late time
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TABLE V
KINETIC PARAMETERS OBTAINED FROM TIME-ACTIVITY CURVES ESTIMATED DIRECTLY FROM CONE BEAM PROJECTIONS USINGQUADRATIC B-SPLINES AND AN
INITIAL TIME SEGMENT LENGTH OF10 s [AG. 4(b)]: (a) SMULATED VALUES; (b) VALUES FROM NOISELESSPROJECTIONS (C) VALUES FROM THEFIRST OF100
NOISY REALIZATIONS; (d) SAMPLE MEANS, AND (€) SAMPLE STANDARD DEVIATIONS FOR THE 100 NOISY REALIZATIONS. SAMPLE MEANS THAT WERE
SIGNIFICANTLY DIFFERENT FROM THESIMULATED VALUES (i.e., P < 0.05 FOR A TWO-TAILED ¢-TEST) ARE LABELED WITH ASTERISKS

cone beam
noisy fits
simulated | noiseless first sample sample
fit mean std dev
(a) (b) (c) (d) (¢)
k1 0.700 0.700 0.697 0.700 0.0064
normal myocardium k,'z 0.150 0.150 0.151 0.150 0.0016
! 0.150 0.150 0.149 0.150 0.011
k3, 0.300 0.300 0.299 0.314* 0.072
septal defect k2, 0.300 0.300 0.307 0.317* 0.066
2 0.100 0.102 0.139 0.095 0.12
k3, 0.500 0.502 0.628 0.578* 0.21
lateral defect Kk, 0.600 0.603 0.727 0.653* 0.16
£ 0.100 0.096 0.246 0.064* 0.17
k3, 0.900 0.900 0.901 0.900 0.0046
liver ki, | 0.0020 0.0020 0.0029 0.0020 0.0004
fl 0.200 0.201 0.197 0.201 0.0047
background g 0.200 0.200 0.199 0.200 0.0010
TABLE VI

SAME QUANTITIES AS IN TABLE V, FOR PARALLEL BEAM PROJECTIONS SAMPLE MEANS THAT WERE SIGNIFICANTLY DIFFERENT FROM THESIMULATED VALUES
(i.e., P < 0.05 FOR ATWO-TAILED ¢-TEST) ARE LABELED WITH ASTERISKS

parallel beam

noisy fits
simulated | noiseless first sample sample
fit mean std dev
(a) (b) (c) (d) (e)
kb 0.700 0.700 0.698 0.702 0.010
normal myocardium k!, 0.150 0.150 0.148 0.151* 0.0031
fl 0.150 0.151 0.148 0.149 0.025
k2, 0.300 0.301 0.322 0.337* 0.16
septal defect I\-'f.z 0.300 0.301 0.397 0.333* 0.12
2 0.100 0.100 -0.094 0.086 0.24
k3, 0.500 0.507 1.102 0.694* 0.68
lateral defect kb, 0.600 0.607 0.954 0.692* 0.40
13 0.100 0.092 -0.276 0.059 0.33
k3, 0.900 0.900 0.894 0.901 0.0082
liver ki, 0.0020 0.0020 0.0014 0.0022*  0.0008
f 0.200 0.201 0.198 0.201 0.0081
background g 0.200 0.200 0.198 0.200 0.0019

frames of the dynamic SPECT study, anatomical imag&ven with a perfect segmentation of anatomy, nonuniform
obtained from a transmission scan, and any other images of #uivity distributions within individual organs must still be
patient that may be available (possibly from other modalitiesjodeled. We consider first the case in which a perfect anatom-
such as X-ray computed tomography). We have developed acal segmentation is available, but there is a nonuniform activity
applied automated segmentation methods [31], [8], which afestribution in the myocardium caused by defects. We then
being refined and validated as part of our ongoing researgierform a preliminary investigation into the errors resulting
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Fig. 9. Effects of failure to segment myocardial defects. The underestimation of (a) time-activity curves estimated from noiseless data withqiofrdefdets;
summed residuals for noisy data and (b) no modeling and (c) faithful modeling of defects; (d) summed noiseless projections and, (e) summedtediseless a
projections for myocardium with defects. The underestimation of myocardial activity seen in (a) results in spatial structure in the summsdoesdpahds

to the myocardium in (d), (e). In (b)—(d), the summation is over all 120 angles for each of the 15 rotations, whereas in (e), the summation is ovepene angl
rotation. The increased noise levels in the lower portions of (b), (c) are because of the relatively high-activity concentration in the liver.

from inaccurate localization of the myocardial walls for atically low [Fig. 9(a)] and had an rms error of 4.9%, compared

defect-free heart. with the error of 0.091% achieved using the faithful spatial seg-
1) Failure to Segment Myocardial Defect$ising quadratic mentation [Fig. 5(b)]. The rms error for the blood pool curve

B-splines and an initial time segment length of 10 s, time-abicreased from 0.48% to 1.8%.

tivity curves were estimated from noiseless simulated coneUsing these time-activity curves, the estimates of the myocar-

beam data generated using the MCAT phantom having defedial uptake and washout parameters were = 0.670 min—!

in the septal and lateral walls of the left ventricular myocardiumnd k1, = 0.146 min—!, respectively, compared with the un-

[Fig. 2(a)]. However, the myocardial defects were not includdziased estimateks,; = 0.700 min—! andk;» = 0.150 min—!

in the spatial segmentation used for estimating the time-activitptained from the curves estimated using the faithful spatial seg-

curves, and the activity distribution was assumed instead to mentation (Table IlI).

uniform throughout the entire myocardium. Despite these relatively small errors in quantitation, spatial
Because of this failure to segment the myocardial defects, tsteucture was evident in the residuals for the modeled projec-

time-activity curve estimated for the myocardium was systertiens, even for simulated noisy projection data containing 10
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million detected events [Fig. 9(b)]. Thus, it may be possibl 300

in practice to detect spatial model mismatch resulting from tt
failure to segment small myocardial defects, as well as to r5
fine the segmentation iteratively in an effort to reduce the spat B
structure in the residuals for the modeled projections. '
2) Inaccurate Localization of the Myocardial Wall$Jsing
guadratic B-splines and an initial time segment length of 10
time-activity curves were estimated from noiseless simulat
cone beam data generated using the MCAT phantom with a «
fect-free myocardium. Spatial model mismatches were induced
by either dilating or eroding the endocardial wall, or dilating or
eroding the epicardial wall. The wall location was displaced k
about 2.5 mm in each case by applying three-dimensional (3- i
gray-scale dilation or erosion operators [32] as appropriate 5 |
voxel maps of the indicator functions for the blood pool, my?,
ocardium, and background tissue, before forward projecting t'
volumes to calculate the spatial basis projection facigfs b
The rms errors for the time-activity curves estimated usir-=
these incorrect spatial segmentations ranged between 15%
23% for the myocardium and 2.8% and 30% for the bloc
pool. The kinetic model parameters obtained from these curves (b)
ranged between 0.537 and 0.961 miirfor the uptakek,; and
0.051 and 0.288 min* for the washoutk;,, compared with
the unbiased estimatés; = 0.700 min~! andk;, = 0.150 5
min—*! obtained from curves estimated using the faithful spati g:i
segmentation. In each case, spatial structure was eviden 3
the residuals for the modeled projections for simulated noi 5
projection data containing 10 million detected events (Fig. 1(&
Thus, it appears that systematic errors in the gross seng
tation of anatomy may have a larger effect on quantitation th.
does the failure to account for small nonuniformities in the a
tivity distributions within the individual organs. Further study
is needed to assess the accuracy with which the spatial segmen-
tation can be performed in practice. As was the case with t ,
failure to segment small myocardial defects, it may be possit 5
in practice to detect spatial model mismatch resulting from gro g
myocardial segmentation errors, as well as to refine the segm§
tation iteratively in an effort to reduce the spatial structure intt 5
residuals for the modeled projections.

« inferior / s
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IV. DISCUSSION -300

« transverse —

The combination of gantry motion and the time-variation of (d)
the r‘?‘d'OpharmaC_eUtlcal d'St”bl_Jtlor? being imaged resu_lt_s n 'Bl‘g. 10. Effects of inaccurate localization of the myocardial walls: summed
consistent dynamic SPECT projection data sets. In addition, tlagiduals for noisy dat and (a) dilated endocardium, (b) eroded endocardium, (c)

use of cone beam collimators can resultin insufficient, as well ﬁ ted epicardium, and (d) eroded epicardium. In (a)~(d), the summation is over
all120 angles for each of the 15 rotations. The increased noise levels in the lower

truncated, prOJe_ctlon sarr_lples. (?o_nventlonal kinetic model p&)'rtions of (a)—(d) are because of the relatively high-activity concentration in the
rameter estimation from time-activity curves generated by ovaiter.

laying volumes of interest on images reconstructed from these
projection data results in biases. The biases in the time-activiisojection data have been addressed, so that least-squares es-
curve estimates and the subsequent kinetic model parametetiesates of time-activity curves can be obtained quickly and ac-
timates can be reduced significantly by estimating the time-amirately using a workstation with a modest amount of memory.
tivity curves directly from the projections. Implementation offemporal B-splines were used to model the time-activity curves
this strategy requires a spatial and temporal model of the far the blood pool and tissue volumes in simulated cone beam
diopharmaceutical distribution throughout the projected field aihd parallel beam cardiac data acquisitions. For noiseless data,
view. there were only minor differences between the curve models
Computational issues associated with fully 4-D direct eststimated from the cone beam and the parallel beam data, as
mation of spatiotemporal distributions from dynamic SPECWell as minor differences between subsequent kinetic model
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parameter estimates. The direct time-activity curve estimat@ses of interest, as well as estimates of the uncertainties and
and subsequent kinetic parameter estimates were robust witho@relations of the quantities and a measure of the goodness of
spect to the temporal B-spline basis function order and the ifi-of the overall spatiotemporal model, we are at least in a po-
tial time sampling, given noiseless data and faithful modelirgition to make an objective comparison that can supplement a
of the spatial distribution of activity and physical effects. Fosubjective evaluation of the data.
both the cone beam and parallel beam geometries, rms mod¥he estimation of time-activity curves directly from projec-
eling errors for the time-activity curves were less than 7% wheion data appears to be potentially useful for clinical SPECT
using cubic, quadratic, or linear splines with initial time segstudies involving slowly rotating gantries, particularly those
ment lengths of 2.5, 5, or 10 s. Errors in uptake and washdhat use a single-detector system or body contouring orbits with
parameters for one-compartment kinetic models obtained fraamultidetector system. The computationally efficient method-
these spline curves were less than 10%. ology presented in Section Il facilitates continued research in
For small (3-cm diameter) myocardial defect regionthis area. The algorithm developed in Section Il can also be
exhibiting reduced uptake and accelerated washout, biasestd to solve quickly the linear least-squares subproblem em-
estimates of kinetic parameters for one-compartment modbkdded in the nonlinear estimation problem that we formulated
were obtained for noisy data using quadratic B-splines aim[5]-[7], thereby facilitating future research into estimating
an initial time sampling of 10 s. The uptake and washoWinetic parameters directly from projection data. This includes
parameter estimates obtained from noisy cone beam data tte joint estimation of a temporal model for the blood input
less bias (4.8%—16%) and variance (22%-42%) than did thdsaction and kinetic parameters for compartmental models
obtained from noisy parallel beam data (bias of 11%-39%irectly from projection data, as well as the parameterization of
variance of 40%-140%). This was presumably because of $matially nonuniform activity concentrations within segmented
increased sensitivity of the cone beam collimators and th&lumes encompassing the projected field of view.
increased resolution at the center of tomograph, near which the
defects were imaged. ACKNOWLEDGMENT
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on kinetic parameters ot_)tamed. fr‘?m time-activity CUNV€Sratory for making the MCAT phantom available. They also
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impact of errors in modeling the spatial distribution of aCt'V't¥1eIped to improve the exposition. Some preliminary results of

and physical effects. For most of our simulations, we haygiq \york were presented in the conference report [33].
assumed that we have a perfect segmentation of a piecewise

uniform activity distribution, faithful models for attenuation

and geometric point response, and that there is no scatteE.l] LK Tuv “An on formulaf ) rUctioBIAM
o : : : . K. Tuy, “An inversion formula for cone-beam reconstructio8);

Clearly, quantltatlye accuracy will suffer in practu;e, yvhgn we 3. Appl. Math, vol. 43, no. 3, pp. 546-552, 1983.

have only approximate models for the spatial distribution of [2] G. T. Gullberg, R. H. Huesman, S. G. Ross, E. V. R. Di Bella, G. L.

activity (as in Section I1I-C) and physical effects. Zeng, B. W. Reutter, P. E. Christian, and S. A. Foresti, “Dynamic cardiac

. . . single-photon emission computed tomographyNirclear Cardiology:
Further study is needed to assess the accuracy with which the State of the Art and Future DirectionB. L. Zaret and G. A. Beller,

spatial segmentation can be performed in practice. Even with  Eds. St. Louis, MO: Mosby, 1999, ch. 11, pp. 137-187.

a perfect segmentation of anatomy, nonuniform activity distri- 3 R- 'IE Carson, "A maximum ”ke";‘;]"dc methOdAfOF_f99$”'0f'i”tff93t
. S . evaluation in emission tomography]? Comput. Assist. Tomogwol.
butions within individual organs must still be modeled. Forthe 15" "4 o 654663, 1986,

case in which the activities are modeled to be uniform within [4] A. R. Formiconi, “Least squares algorithm for region-of-interest evalu-

the individual volumes of the segmentation, this requires sub- atiog(i)” fgg)isig’gstomogfaph%EEE Trans. Med. Imagvol. 12, no. 1,
Lo . . pp. 90— ) .
dividing the segmentation into smaller volumes. A second aP-[5] R. H. Huesman, B. W. Reutter, G. L. Zeng, and G. T. Gullberg, “Kinetic

proach is to model nonuniform activities within the larger vol- parameter estimation from SPECT projection measuremehts|ticl.

umes by selecting sets of spatial basis functions defined Within6] Medg}’y?_'- 35_3' no. 5, Pp. 22%_P—2t_23pf' 199;-PE T coneb o
. . . CLe e Inetic parameter estimation rrom cone-beam projection
the larger volumes (e.g., spherical harmonics defined within the[ measurementsPhys. Med. Biol.vol. 43, no. 4, pp. 973-982, 1998.

left ventricular myocardium). Our future research in this area[7] B. W. Reutter, G. T. Gullberg, and R. H. Huesman, “Kinetic parameter
will focus on the second approach, used in conjunction with estimation from attenuated SPECT projection measuremeltigE

. . . Trans. Nucl. Scj.vol. 45, no. 6, pp. 3007-3013, 1998.
adaptive refinement of the volume boundaries. Our future re-i “Kinetic parameter estimation from dynamic cardiac patient

search will also focus on improved modeling of physical effects, = SPECT projection measurements,"i898 IEEE Nucl. Sci. Symp. Med.
particularly attenuation and scatter. Imag. Conf. Re¢cR. Sudharsanan, Ed., 1999, pp. 1953-1958.

. o . . [9] P. C. Chiao, W. L. Rogers, N. H. Clinthorne, J. A. Fessler, and A. O.
Although accurate, precise quantitation is the ultimate goal, Hero, “Model-based estimation for dynamic cardiac studies using ECT,”

inaccuracy and imprecision can be tolerated so long as we can IEEE Trans. Med. Imagvol. 13, pp. 217-226, Feb. 1994.

discriminate between healthy and diseased tissue. For exampl&] P- C. Chiao, W. L. Rogers, J. A. Fessler, N. H. Clinthorne, and A.
0. Hero, “Model-based estimation with boundary side information

although our noisy data simulations yielded biased estimates of ' ,oindary regularization,JEEE Trans. Med. Imag.vol. 13, pp.
uptake and washout parameters for the small myocardial defect 227-234, Feb. 1994.

regions, the resulting kinetics were significantly different from[11l R. E. Carson, “Two image-wide parameter estimation methods for
positron emission tomography: Theory and application to the mea-

the klnetlt?s obtal_ngd for the nor_mal_myocardlum. Given esti- surement of local cerebral blood flow in humans,” Ph.D. dissertation,
mates of time-activity curves or kinetic parameters for two vol- University of California, Los Angeles, 1983.
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